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Probability Distribution of the Phases in a Crystal with Heavy Atoms 
I. Centrosymmetrie Crystal: Probability Distribution of the Sign 
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The probability distribution of the signs of the structure factors of a centrosymmetric crystal containing 
heavy atoms, in relation to the sign of the contribution from the heavy atoms, is worked out. Four 
different cases are considered, namely when the number of heavy atoms in the unit cell is 1, 2, 4 and 
many. A table and curves are given showing the fractional number of reflexions for which the sign is 
the same as that of the heavy atoms alone, for different contributions from the heavy atoms, for each 
of the four cases. The theoretical results have also been verified with the data available for a few 
crystals. 

Introduction 

The phase problem in crystallography has been at- 
tacked by means of various techniques, of which the 
heavy-atom method, first used by Robertson (1935, 
1936) is the earliest and the simplest. The principle of 
this method is that when the contribution from the 
heavy atoms dominates the structure amplitude of 
a crystal, the phase UN of the contribution from all 
the N atoms will not be much different from the phase 
up due to the contribution from the P heavy atoms. 
Thus, the quantity If~vl exp (iup) may be used as the 
Fourier coefficient for the first electron-density map. 
In this connection it will be worth while to study the 
probability distribution of the deviations of up from 
u~v, that is ofulv - u p ( =  0 say), depending on the heavy- 
atom contribution and the number P of heavy atoms 
in the unit cell. The problem becomes particularly in- 
teresting in connection with the determination of pha- 
ses by the anomalous-dispersion method in which the 
phase UN of the reflexion is determined (see Rama- 
chandran & Raman, 1956) except for a twofold ambi- 
guity, namely up + 0 and up + rc - 0. One method adop- 
ted to resolve this ambiguity is to choose the phase 
angle closer to up, that is, to choose between the two 
possible values of 0 that one which is acute (Rama- 
chandran & Raman, 1956). This has been adopted for 
solving the structures of I.(+)-lysine monohydrochlo- 
ride dihydrate (Raman, 1959) and Factor V la (Dale 
et al., 1963). Here again it would be useful to know 
quantitatively how 0 is distributed, in particular the 
fractional number of reflexions for which 0 is less than 
a specific value say, 90 °, for a given heavy-atom con- 
tribution. 

The theory for the probability distribution of 0 for 
a specific case, namely for a crystal of space group 
P1 with one heavy atom besides a large number (Q) 
of light atoms, has been worked out by Sim (1957b). 
However, in the present study, the theory is worked 
out from a more general point of view so that the theory 
for the other three important cases, namely, for a unit 

cell containing two heavy atoms and many heavy atoms 
with centric and acentric configurations, which have 
not been considered earlier, are also fully worked out. 
The theoretical results are also used to compare the 
different cases on a quantitative basis. 

The corresponding problem of the centrosymmetric 
crystal is the probability distribution of the product 
of the signs (denoted by s) of the total structure factor 
Fjv and that of the heavy atom contribution Fp. This 
problem for the case of a crystal of space group P i 
with two and many heavy atoms in the unit cell has 
been worked out by Sim (1957a). However, his final 
expressions are in the form of integrals. In this paper 
the distributions have been obtained in terms of expli- 
cit functions. Further, one more case of common oc- 
currence is considered, namely that of a centrosym- 
metric crystal containing four heavy atoms in the unit 
cell. Also a unified method of approach is adopted 
both for the distribution of 0 and of s. 

In part I the theory for the distribution of s in a 
centrosymmetric crystal is worked out, and in part II 
the corresponding problem in the non-centrosymmetric 
case, namely the distribution of O=UN--Up, is consi- 
dered. From the theory it will become clear that the 
probability functions* in either case depend not only 
on the contribution from the heavy atoms but also 
on the number of heavy atoms in the unit cell. There- 
fore, the different cases dealt with have been named 
according to the number of heavy atoms in the unit 
cell with the prefix centric or acentrlc, depending on 
whether the crystal is centrosymmetric or non-centro- 
symmetric respectively. 

We consider a centrosymmetric crystal containing P 
heavy atoms and Q light atoms in the unit cell so that 

* Since we shall be dealing with both continuous and 
discrete cases in this paper, we use the term probability density 
function in the case of a continuous variable and the term 
probabifity function in the discrete case. This follows standard 
usage (see for example Cramer, 1945). The integral of the 
probability density function is called the cumulative function 
or distribution function. 
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the total number of atoms in the unit cell is P + Q = N .  
The structure factor of a reflexion H(=-hkl) can be 
written in terms of the contributions from the P and 
the Q atoms as 

FN( H) = Fp( H) + FQ( H) . (1) 

The following symbols used in previous publications 
from this laboratory (Srinivasan, Sarma & Ramachan- 
dran, 1963) are employed in this paper as well and may 
be defined here" 

P a 

, , O ' ~ = O ' e + ( 7 0  
i ~ l  j - ~ l  

2 _ _  2 2 2 ~  2 2 a I -ae/aTv , a~ + (2) , a2-ao/aTv a 2 = l .  

Let &v and so represent the sign parts of FN and 
Fp respectively and let s denote the product of the 
signs SN and so, that is, s=sNso. It is evident that 

$2=$2=S 2= 1 and (3) 

s =  + 1, (4) 

according as FN and Fp are of the same or opposite 
signs respectively. Multiplying (1) by so one obtains, 
using (3), 

slFlvl=lFol + soFo . (5) 

The probability density function of FQ is known to be 

P ( F Q ) = ( I / V ~ )  exp ( - F ~ / 2 a ~ ) ,  (6) 

from which the probability function Of SpFQ is given by 

P(SpFQ)=(1/V2-~aQ2) exp (-F~)/2a~) , (7) 

since sZe = 1. With the use of (7) and (5), the conditional 
Probability function of slF~r I for a given IFPI is given 
by 

P(SIFN[; [ F P I ) = ( I / ~ / ~ )  exp [-(slF~¢[ - 

-IFPl)Z/2a~]. (8) 

Since the centrosymmetric case is fundamentally a 
one-dimensional random-walk problem, the probab- 
ility function of slFlvl can be interpreted as the joint 
probability of s and [FNI. However, s is a discrete 
variable capable of taking only the values _+ 1. The 
joint probability function of s and [&vl for a given 
[Fo[ is therefore given by 

P(IFN[, s; [ F o l ) = ( 1 / ~ / ~ )  exp [-(slF~-[ 

-IFPI)2/2a~]. (9) 

From (9) the probability function of s for a given 
[Fo[ is given by 

P(s; IFol) = P( l fx[ ,  s; [Fol)dl&v[ 
0 

_ _ [ , o o  

=(I/l/2~a~)10 exp [-(slFNl-IFolF/2a~]dl&vl . (10) 

If the substitution y=(slFivl--IFt, I)/V2aQ is made in 
(10) and the integrations are carried out, it becomes 

S 
P(s; Ifol)=½+ ~- erf( l fol / l /2ao),  (11) 

where the property that the error function is an odd 
function, i.e. er f (sx)=s  eft(x), is used. From (I 1), the 
probability function of s (independent of IFel) is given 
by 

P(s )=  P(s; ]FPDP(IFoI)d[Fo[ . (12) 
levi 

It is evident from (12) that the probability function 
of s depends on the density function of IFol, which in 
turn depends on the number of heavy atoms in the 
unit cell. Hence, four important cases arise in the cen- 
trosymmetric space group, namely a crystal containing 
1, 2, 4 and many heavy atoms (that is P =  I, 2, 4 and 
many) in addition to a large number of light atoms. 

It is obvious that P ( +  1) and P( - 1) are the probab- 
ilities that the sign of F~v may be positive or negative 
with reference to Fo. For simplicity these are denoted 
by the symbols P ( + )  and P ( - )  respectively. 

Centric one-atom case 

In this case the heavy atom is at the centre of inver- 
sion, which may be chosen as the origin. Since a 2 =fie 
in this case, the density function of IFPI is given by 

P(lFPl)=d(lFo] -fP)=d(lFP] --O'p) . (13) 

Using (13) and (11) in (12), the probability function 
of s is given by 

s 
P(s )=  -~ erf ( I f  ol/V2ao)]d(If l,[ -crl , )dl f  ,,[ 

S 
= ½+ -~erf(ap/ faQ) 

= ½ + (s/2) err (al/V 2a2). (14) 

Centric two-atom case 
In this case the density function of IFP[ is given by 

P (1Fp[) = (2~re V2ap)/¢ 1 - (F2e/2a2e); 
O<Fp<[/2ap.  (15) 

Using (15) and (11) in (12), the probability function of 
s is given by 

P(s)= [½+ 

s 2dlFPI 
-~ erf([FPl/V2aQ)]  r/2ooV1 ) . (16) 

if  the substitution x=lFol/V2ap ~s made in (16), it 
becomes 

1 Ii dx s l~ erf(alx/a2) dx (17) 
P(s)= -~ --~1-=_~.2- + -~ o ~ /1 -x  2 " 

Substituting for erf (x) in terms of Kummer's  conflu- 
ent hypergeometric series (Sneddon, 1961; p. 46, Pro- 
blem 11 (iii)], (17) becomes 
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, x  

P ( s ) = 5 +  -~- o-~- U2 ' 2 '  a2z ]/-l_x2 

(18) 
If the substitution y = x  z is made in (18), it becomes 

I l (1 --y)-÷,Fl(½; -~;-0-~y/a~)dy, e(s)=5+ ~V'°'s o 

which on integration gives (Sneddon, 1961 ; p. 47, Pro- 
blem 16 (i)] 

O'lS 2)2F2(~-, 1" 3 3._a~/a~) (19) P ( s ) = 5 +  ul/,u0-2 fl(l ± ' 

where fl denotes the beta function. If Sim's notation 
(Sim, 1957a) for the ratio of the r.m.s, contributions of 
the P and Q atoms to the intensity, namely (0-1/az)=r 
is used, (19) becomes 

p ( s )=5  + r s  } (--rE) n 
re .=o (2n+ 1)F(n+{) 

=0"5+0"3592 s[r-0"2222 r3 +0.0533 r 5 - . . . ] ,  (20) 

which is in agreement with the expression derived by 
Sim (1957a) by a different method. 

Centricfour-atom case: 
Let us take the P-group to contain two independent 

pairs of similar atoms. In this case the density function 
of IFPI is given, in terms of Gauss's hypergeometric 
series, by (see Appendix A) 

P(lFPl)=(l/nae)zFa(k, 5; 1; l -F2e/4a2e); 
O<Fp<20-p. (21) 

Using (21) and (11) in (12), the probability function of 
s is given by 

t2ap 1 ( P(s) . . . . .  2F~ 5,5;  l ; l  
dO ~0-P 

F~ 
40-3)[ 5 + 2 erf (IFPI/,/20-e)ldlFel, (22) 

which simplifies to (see Appendix B, equation (B-3)] 

P(s) = 

2s (./2 K(sin ~.) erf (l./2ax cos c~/a2) sin ada ,  (23) 5+ --~-~o 

I n/2 de 
where K(sin ~) = represents the 

,Jo ]/1 - s i n  z a sin 2 ~0 

complete elliptic integral of the first kind. The integral 
in the right-hand side of (23) has been evaluated by a 
numerical integration method for different values of 
a~ and the results are given in the form of graphs (see 
Fig. 1). 

Centric many-atom case 
In this case the density function of IFPI is known 

to be 
P ( I F P I ) = ( 2 / ~ )  exp (-F~/20-2e) ; 

o <_ IFPI <- c~ .  (24) 

Using (24) and (11) in (12), the probability function of 
s is given by 

S 
+ - f  erf (IfPI/1/20-e)](2/I/2~fe) exp ( - f ~ / 2 @ ) d l f p I ,  

which on making the substitution x = [Fp[/1/20-P becomes 

e(s)= _1_(~ Vrc ,)0 [1 + s  erf(0-xx/0-2)] exp ( -xZ)dx  . (25) 

If the hypergeometric series expansion of erf(x) is 
used as before, (25) becomes 

P(s)=5 
s f °° 2 o'l XlFI(5; a. +-1/~-o., ]~re 0-z -2' -0-~xZ/0-~)exp ( -xZ)dx  

which, on substituting y = x  z, becomes 

S s 0-1 1F1(5;{; -0-~y/0-~)exp(-y)dy. (26) P ( s ) = 5 +  ~ 0--T o 

Equation (26) simplifies to 

P(s )=  ½ + s a_2 L 2£'1(½, 1 ; {; -0-~/0-~). (27) 
O" 2 

Since 2Fl(½, 1' 3. _ x z) = (tan-lx)/x (Sneddon, 1961, p.42, 
equation 1 (vii)], (27) becomes 

S 
P(s) = ½ + - -  tan -1 (al/a2). (28) 

7~ 

It is clear that the probability functions (14), (19), 
(23) and (28) are in the normalized form since they 
satisfy the normalization condition P ( + )  + P ( - )  = 1. 
Further, they must satisfy two other physical condi- 
tions, namely that P ( + ) = 5  when there is no heavy 
atom in the unit cell and that P ( + ) =  1 when the light- 
atom contribution tends to zero. This means that the 
following limits should hold: 

1'0 

0'9 1 
A 
+ 

~" 0.8 

07 

0 6  

0 " 5  I I I I I 

0 0'2 0'4 0"6 0"8 1'0 

a~ 

Fig. I. T h e  P ( + )  f u n c t i o n  fo r  the  v a r i o u s  cases,  n a m e l y  
(1) one-atom, (2) two-atom, (4) four-atom and (M) many- 
atom cases respectively, at different heavy-atom contribu- 
tions ax E . 
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p(+)_>_l_ as a~-->0 and a~- -> l ,  (29) 

and P ( + ) - - > I  as a~-.~l and a2--->0. (30) 

It is evident that (29) is satisfied by all the probability 
functions. Further, it is clear that (30) is satisfied by 
(14) and (28), while it is not self-evident in the other 
two cases. They can however be shown to satisfy (30) 
[see Appendix C, equations (C-l) and (C-5)]. 

Discussion of the theoretical results 

The probability P ( + )  has been evaluated as a func- 
tion of a~ in all four cases and is tabulated in Table 1. 
The probabilities are also plotted in Fig. 1 from which 
it will be seen that all four curves are nearly linear in 
the middle ranges of a~, say from a T = 0.15 to a~ = 0.85. 
(The choice of the parameter a~ instead of r=al/a2 
(used by Sim; 1957a & 1961) is dictated by two reasons: 
(a) that the whole range of possible values can be 
covered in a graph, and (b) that the curves are nearly 
linear as stated above). 

Table 1. Values of P( + ) for the different cases cor- 
responding to d(ff'erent fractional heavy-atom contribu- 

tions (aT) 
P 1 2 4 M 

o-12 
0'0 0"5 0"5 0"5 0"5 
0"2 0"692 0"67 0"651 0"648 
0"4 0"793 0"756 0"723 0-718 
0'5 0"84 0"795 0"755 0"75 
0"6 0"89 0"833 0"785 0"782 
0"8 0"977 0"905 0"849 0"852 
1 "0 I "0 1 "0 1 "0 1 "0 

Table 1 and Fig. 1 can be used to determine the 
fractional number of refiexions for which s = + 1 if we 
know the mean value of a~ z, that is the contribution to 
the intensity by the heavy atoms. It is obvious that these 
data would apply equally well to the case of a light- 
atom structure in which one knows the positions of P 
atoms out of the total of N atoms in the unit cell and 
it is desired to compare the signs of Fp and F~v. 

The results of the theory can be used to discuss the 
general nature of the heavy-atom method from the 
point of view of the number (P) and the fractional 
contribution (a~) of the heavy atoms in the unit cell. 
In general, since a larger value of P ( + )  means that 
more terms are given the correct sign if the sign of 
Fp is used, a larger value of P ( + )  would be more 
favourable for using the heavy-atom method of struct- 
ure analysis. From Fig. 1 and Table 1 it is easily seen 
that, for a given value of a~, 

P I ( + )  > P 2 ( + )  > P4(+)"~PM(+) 
where the subscript to the probability function refers 
to the number of heavy atoms in the P-group. This 
means that, for a given al 2, the heavy-atom method leads 
to a better determination of the structure as the 
number of heavy atoms in the P-group decreases. For 

example, for a~=0.5, the value of P ( + )  is 0.75 in the 
many-atom case while it is as high as 0.84 in the 
one-atom case. Incidentally, it is interesting to note 
that the value in the former case is in agreement with 
the value given by Lipson & Cochran (1953) purely 
from physical arguments. 

It may be pointed out that a large value of P ( + )  
is not the only criterion for the success of the heavy- 
atom method. Since the terms for which IFPl-~0 are 
omitted in the practical computation of the ~,'-synthesis 
the actual distribution of IFPI is also important in 
determining the success of the heavy-atom method as 
this depends on the number of terms that can be safely 
put in the early Fouriers. The percentage of reflexions 
for which yp(= [FPl/aP) is less than, say 0.1, is larger 
for the cases with P = 4  or many, than the cases with 
P =  1 or 2. Thus, from the point of view of including 
more terms also, the case with a smaller number of 
heavy atoms in the P-group is more favourable (for 
a given cut off and a given value of a~). However, 
it may be noted that all terms can be included in com- 
puting the y'-synthesis by employing a simple weighting 
function which becomes useful in improving the reso- 
lution of the unknown atoms, especially when the 
heavy-atom contribution is small (for details see Blow 
& Crick (1959) and Woolfson (1956)]. 

From Fig. 1 and Table 1 it is easily seen that 
for a given number of heavy atoms in the unit cell 
(i.e. P is fixed) the value of P ( + )  increases as a~ increa- 
ses. Thus, the percentage of reflexions whose signs are 
correctly determined if the sign of Fp is used increases 
as 02 increases. Since better resolution of unknown 
atoms is obtained by using more terms with correct 
sign, it follows from the above that the resolution of 
the Q-atoms improves with increasing value of a~. 
This result deduced here from qualitative arguments is 
in agreement with the results obtained by Luzzati (1953) 
and by Woolfson (1956), who have considered the 
question of resolution of the unknown atoms in a 
quantitative way using statistical methods. 

It will be seen in Fig. 1 that the curve for the four- 
atom case is quite close to that of the many-atom case. 
In order to see how close the distribution functions 
are for these two cases, they have been plotted in Fig. 
2. The distribution for y=lFPI /ap  in the many-atom 
case is well-known and is given by 

P(y) =]/2/zc exp (-y2/2) .  (31) 

That for the four-atom case has been derived in Ap- 
pendix I and may be given here. The function is 

2 K([/i_y2/4)" 1 2FI(J_ ' ½ ; 1" 1 -y2/4)= 7 P(Y)= -7 
(32) 

It will be seen from Fig. 2 that the density function 
P(IFPI)=O for (IFPI/aP)>2 in the four-atom case, 
while it is finite in this region for the many-atom case. 
This may possibly explain the peculiar crossing over 
of the two curves in Fig. 1. It has been pointed out 
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that for P>_6 the distribution of y=lFPl/aP tends to 
be close to the asymptotic distribution for a large 
number of atoms (Qurashi, 1953). In view of this it 
is not necessary to consider these cases separately. In 
fact from the results shown in Fig. I, it may be taken 
that the distribution is close to that of the many-atom 
case for P > 4. 

The values given in Fig. 1 have also been tested 
with the experimental data for four crystals, namely, 
L-tyrosine hydrochloride (Srinivasan, 1959b), L-tyro- 
sine hydrobromide (Srinivasan, 1959a), a-D-glucosa- 
mine hydrobromide (Chandrasekaran & Mallikarju- 
nan, 1963) and a-D-glucosamine hydrochloride (Chan- 
drasekaran & Mallikarjunan, unpublished). All four 
crystals belong to the space group P21 (two-atom case) 
and the hOl reflexions belonging to the centrosymme- 
tric projection were used for the test. For obtaining the 
mean value of a~, say (crxZ), the data were divided into 
various ranges of (sin 0) /2=0 to 0.1, 0.1 to 0.2, etc. 
and the value of a~ corresponding to each range was 
weighted according to the number of reflexions in 
that range. In this way, the mean value (a  2) was 
obtained, which was used for the comparison with 
theory. The results are shown in Table 2. 

Table 2. Verification of 
the P ( + )  function.for the centric two-atom case 

P ( + )  
Crystal Space group (0"12) E x p .  Theor. 

L-tyrosine HBr P21 0-84 0"898 0.918 
L-tyrosine HC ! P21 0.47 0.81 0.79 
c~-D-glucosamine HBr P21 0.83 0.879 0-915 
c~-D-glucosamine HCI P21 0.46 0.765 0.78 

The author wishes to express his thanks to Professor 
G. N. Ramachandran and Dr. R. Srinivasan for the 
useful discussions he had with them during the course 
of this work. He wishes to thank Dr. K. Venkatesan for 
having suggested the problem. Thanks are also due to 
to M. Mallikarjunan and R. Chandrasekaran for pro- 
viding the data on ~-D-glucosamine hydrohalides be- 
fore publication. He also wishes to thank the referees 
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Fig. 2. The probability density function of the normalized 
variable y= IFPI/ap for a unit cell of space group Pi  cont- 
aining (1) four atoms and (2) many atoms. 

for their useful comments. Finally, his thanks are due 
to the Council of Scientific and Industrial Research for 
the award of a Junior Research Fellowship during the 
tenure of which this work was done. 

A P P E N D I X  A 

Distribution of  IFpI for the case of four atoms 

The structure factor of a reflexion H for a crystal 
containing two independent pairs of atoms of the same 
type in the space group P1 is given by 

Fp(H) = 2fp(cos 01 + cos 0z). (A- 1 ) 

Making the substitution y=Fp/ae ,  (A-l) becomes, 
since o 2 = 4! 2, 

y = cos 01 + cos 02 = xl + x2 (say); Ixi[ -< 1 
and i = 1 , 2 .  (A-2) 

The density function of x~ is given by 

P (x0 = (1 In)IV ' 1 - x 2 . (A-3) 

Since x~ and xz are independent random variables, the 
Fourier transform of the density function of y is the 
product of the Fourier transforms of the density func- 
tions of xl and x2. We may denote by Fe[P(x)] and 
Fe[P(x)] the exponential and cosine Fourier transforms 
respectively of the function P(x). Then from (A-2) it 
follows that 

Fe[P(y)]= Fe[P(Xl)]Fe[P(x2)] . (A-4) 

Since P(xO is an even function of x~, (A-4) can be 
written 

Fe[P(y)]=ZFc[P(xl)]ZFc[P(xz)] . (A-5) 
Now 

7r 
Fc[ I / V 1 -  x 2] = -~ Jo( R) , 

(Erdelyi, 1954, p. 11, equation 8) where R is the vari- 
able in Fourier space. Thus (A-5) and (A-3) give 

Fe[ P(y)] = [Jo(R)] 2. (A-6) 

Taking the inverse Fourier transform, (A-6) gives 

p ( y ) =  ~ 1  Fel[Jo(R)] 2 = nl Fgl[Jo(R)]2, (A-7) 

1 
where ~ is the usual factor occurring in such inverse 

transformations. Using equation (21), p. 46 of Erdelyi 
(1954), the density function of y is given by 

P(Y)= 2 n  P-,/2 - 1  , ly[ < 2 .  (A-S) 

But 

P_llz(Z)=zFI(½,-~-; 1 ; - ~ ) ,  (A-9) 

(Erdelyi, 1954, p. 370). From (A-9) and (A-8), the 
density function of y is therefore given by 

1 ( 
P ( y ) =  ~ 2F~ (½, ½; 1 ; 1 - , lYl--- 2 .  (A-10) 
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Hence the density function of [Fel=crvly[ is given by 

( F~_]  
P(IFPI)-  ~zo'vl 21:1 (½, {-;I;  1 -  4a2e 1, 

0 <_ IF el < 2ap.  (A- 11) 

This function can be shown to be in the normalized 
form" for 

I2 crP P(IFPI)dFp = 

f 2ae 1 2F, (½,½-;1"1 F ~ )  o 7w-----p , 4aze dFp = I (say). (A-12) 

On making the substitution x =  1 -[Fpl2/4a 2 in (A-12), 
it becomes 

I=~0111 (1 -x)-+2FI(~, 1_; 1", x)dx , (A-13) 

which on integration becomes (Sneddon, 1961, p. 47, 
equation 16(i)] 

I =  1 fl(1 ' 1 • 3 .  , ~)3F2(~-, ~, 1 1 1) = 2 - -  , , g ,  - - 2 F l ( ½ ,  1 ;  _32, 1 ) .  
7r 

(A-14) 

Since 2Fl(~, ½; 3; 1)=sin -1 1 (Sneddon, 1961, p. 42, 
equation l(vi)], (A-14) becomes 

l=(2fiz) sin-~ 1= 1 . (A-15) 

A P P E N D I X  B 

Making use of (A-12) in (22), it becomes 

P(s)=½ 

s i2ap ( ~--ff-a;-) + 2--~P-~P,)O 2F1 ½,½; 1;1 - erf(lfvl/l/2aQ)dfp 

= ½ +  s i ~  (say). (B-l) 
7~ 

Substituting cos e for [fpl/2a~ in I~, it becomes 

1 7r/2 
It = 2Fff½, ~,1" 1", sin 2 e) err (1/2o'1 cos e/a2) sin e de 

dO 
eJr/2 2 

-- \,~0 ~-K(sin e) e r f ( (2a l  cos e/az) sin c~ de ,  (B-2) 

where K(sin a) is the complete elliptic integral of the 
first kind [Sneddon, 1961, p. 42, equation l(viii)]. Sub- 
stituting (B-2) in (B-I), it becomes 

P(s)=½ 
2 

l "/2 K(sin e) erf (V2al cos e/a2) sin e de .  )B-3) + - - ~ s 0  

A P P E N D I X  C 

To show that (30) is satisfied by the probability func- 
tion of the two-atom case, one avoids using equation 

(19) since it is in the form of a power series. If, how- 
ever, the previous integral (17) is considered, it be- 
comes, when a2-+ I, 

2 f l  0 dx 
P ( + ) =  ~- llfi----_x 2 - 1 .  (C-l) 

Similarly if the four-atom case is considered, as a~ ~ 1, 
(23) becomes 

2 
I zr/2 K(sin e) sin e d e .  (C-2) P ( + ) = ½ +  ~ ,Jo 

If the substitution sin e =  ]/x is made in (C-2), it be- 
comes 

V]--_. x- dx .  (C-3) 

Substituting for K(Vx  ) in terms of hypergeometric 
series as before, (C-3) becomes 

IS; P ( + ) = ½ +  ~ -  2Fl(-~,½; 1 ;x ) (1 -x ) -*dx ,  (C-4) 

and, making use of (A-13) in (C-4), we get 

p(+)  1 1 _  = ~ + ~ - 1 .  (C-5) 
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